skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhowmik, Suman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thiocarbonyls exhibit unique photophysical properties, characterized by rapid intersystem crossing (ISC) due to favorable singlet−triplet energetics and enhanced spin−orbit coupling. However, the role of hydrogen bonding in modulating the ISC remains underexplored. This study investigates the effect of solvent−solute hydrogen bonding on the ISC dynamics of 7-(diethylamino)-4- methyl-2-sulfanylidene-2H-chromen-2-one (thiocoumarin 1, TC1) using steadystate and time-resolved spectroscopy, complemented by theoretical calculations. Experimental data reveal that in methanol, hydrogen bonding leads to increased fluorescence quantum yield, prolonged singlet-state lifetime, and reduced triplet yield compared to aprotic acetonitrile. Time-resolved spectroscopy identifies an additional long-lived emissive singlet state in methanol, attributed to a hydrogen-bonded state, which slows ISC. Theoretical calculations demonstrate that hydrogen bonding alters the electronic structure and constrains ISC along key nuclear coordinates, including the C S bond vibration and dihedral angles, leading to decreased triplet formation. These findings provide mechanistic insights into hydrogen-bonding-mediated control of ISC in thiocoumarins, with implications for designing functional materials with tunable photophysical properties. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026